Right-Hand Side Dependent Bounds for GMRES Applied to Ill-Posed Problems
نویسنده
چکیده
In this paper we apply simple GMRES bounds to the nearly singular systems that arise in ill-posed problems. Our bounds depend on the eigenvalues of the coefficient matrix, the right-hand side vector and the nonnormality of the system. The bounds show that GMRES residuals initially decrease, as residual components associated with large eigenvalues are reduced, after which semi-convergence can be expected because of the effects of small eigenvalues.
منابع مشابه
FGMRES for linear discrete ill-posed problems
GMRES is one of the most popular iterative methods for the solution of large linear systems of equations. However, GMRES generally does not perform well when applied to the solution of linear systems of equations that arise from the discretization of linear ill-posed problems with error-contaminated data represented by the right-hand side. Such linear systems are commonly referred to as linear ...
متن کاملOn the regularizing properties of the GMRES method
The GMRES method is a popular iterative method for the solution of large linear systems of equations with a nonsymmetric nonsingular matrix. However, little is known about the behavior of this method when it is applied to the solution of nonsymmetric linear ill-posed problems with a right-hand side that is contaminated by errors. We show that when the associated error-free right-hand side lies ...
متن کاملGmres , L - Curves , and Discrete Ill - Posed Problems ∗
The GMRES method is a popular iterative method for the solution of large linear systems of equations with a nonsymmetric nonsingular matrix. This paper discusses application of the GMRES method to the solution of large linear systems of equations that arise from the discretization of linear ill-posed problems. These linear systems are severely ill-conditioned and are referred to as discrete ill...
متن کاملSolving Ill-Posed Linear Systems with GMRES and a Singular Preconditioner
Almost singular linear systems arise in discrete ill-posed problems. Either because of the intrinsic structure of the problem or because of preconditioning, the spectrum of the coefficient matrix is often characterized by a sizable gap between a large group of numerically zero eigenvalues and the rest of the spectrum. Correspondingly, the right-hand side has leading eigencomponents associated w...
متن کاملConvergence rates analysis of Tikhonov regularization for nonlinear ill-posed problems with noisy operators
We investigate convergence rates of Tikhonov regularization for nonlinear ill-posed problems when both the right-hand side and the operator are corrupted by noise. Two models of operator noise are considered, namely uniform noise bounds and point-wise noise bounds. We derive convergence rates for both noise models in Hilbert and in Banach spaces. These results extend existing results where the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013